Human Wavelength Discrimination of Monochromatic Light Explained by Optimal Wavelength Decoding of Light of Unknown Intensity
نویسندگان
چکیده
We show that human ability to discriminate the wavelength of monochromatic light can be understood as maximum likelihood decoding of the cone absorptions, with a signal processing efficiency that is independent of the wavelength. This work is built on the framework of ideal observer analysis of visual discrimination used in many previous works. A distinctive aspect of our work is that we highlight a perceptual confound that observers should confuse a change in input light wavelength with a change in input intensity. Hence a simple ideal observer model which assumes that an observer has a full knowledge of input intensity should over-estimate human ability in discriminating wavelengths of two inputs of unequal intensity. This confound also makes it difficult to consistently measure human ability in wavelength discrimination by asking observers to distinguish two input colors while matching their brightness. We argue that the best experimental method for reliable measurement of discrimination thresholds is the one of Pokorny and Smith, in which observers only need to distinguish two inputs, regardless of whether they differ in hue or brightness. We mathematically formulate wavelength discrimination under this wavelength-intensity confound and show a good agreement between our theoretical prediction and the behavioral data. Our analysis explains why the discrimination threshold varies with the input wavelength, and shows how sensitively the threshold depends on the relative densities of the three types of cones in the retina (and in particular predict discriminations in dichromats). Our mathematical formulation and solution can be applied to general problems of sensory discrimination when there is a perceptual confound from other sensory feature dimensions.
منابع مشابه
Blocking Short-Wavelength Component of the Visible Light Emitted by Smartphones’ Screens Improves Human Sleep Quality
Background: It has been shown that short-wavelength blue component of the visible light spectrum can alter the circadian rhythm and suppress the level of melatonin hormone. The short-wavelength light emitted by smartphones’ screens can affect the sleep quality of the people who use these devices at night through suppression of melatonin.Objectives: In this study, we examined the effects of co...
متن کاملStudy of Light Wavelength Dependency in Red-Orange Spectrum on Continuous Culture of Synechocystis sp. PCC6803
In this study, the effect of light wavelength on growth rate and lipid production of Synechocystis was investigated. Continuous cultivation system was used to have uniform cell density and avoid self-shading in order to obtain more precise results. Based on previous studies, red light is more efficient than other colors in the visible spectrum for cultivation of Synechocystis; however, the opti...
متن کاملWavelength discrimination in the hummingbird hawkmoth Macroglossum stellatarum.
Despite the strong relationship between insect vision and the spectral properties of flowers, the visual system has been studied in detail in only a few insect pollinator species. For instance, wavelength discrimination thresholds have been determined in two species only: the honeybee (Apis mellifera) and the butterfly Papilio xuthus. Here, we present the wavelength discrimination thresholds (Δ...
متن کاملOptical Characterization of NIPAM and PAGAT Polymer Gels for Radiation Dosimetry
Introduction The purpose of the current study was to determine optical sensitivity of N-isopropyl acrylamide NIPAM and polyacrylamide gelatin and tetrakis hydroxymethyl phosphoniun chloride (PAGAT) polymer gels for different wavelength of visible light spectrum applied in optical computed tomography method. Materials and Methods NIPAM and PAGAT polymer gels with conventional formulations used f...
متن کاملTyndall's paradox of hue discrimination.
We confirm a remarkable but forgotten property of human color vision that was described over 50 years ago by Tyndall [J. Opt. Soc. Am 23, 12 (1933)]: if wavelength discrimination is measured in the region of 455 nm, the sensitivity of the eye improves when a large fraction of the monochromatic light in each half of the matching field is replaced by white light that is common to the two halves. ...
متن کامل